Molecular dynamics of half-integer quadrupolar nuclei studied by QCPMG solid-state NMR experiments on static and rotating samples. Theory and simulations.

نویسنده

  • Flemming H Larsen
چکیده

Simulations of QCPMG NMR type experiments have been used to explore dynamic processes of half-integer quadrupolar nuclei in solids. By setting up a theoretical approach that is well suited for efficient numerical simulations the QCPMG type experiments have been analyzed regarding the effect of the magnitude of the EFG- and CSA-tensors, the spin-quantum number, different dynamical processes and MAS. Compared to the QE experiment the QCPMG experiment offers not only intensity gain by an order of magnitude and changes in overall lineshape as a function of the kinetic rate constant but the lineshape of the individual spin-echo sidebands is also very sensitive towards dynamics. Hereby a visual identification of the dynamics is obtained. In common for all the simulations the spin-echo sidebands are narrow in the slow (k< or =10(2) Hz) and the fast (k> or =10(7) Hz) dynamic regime whereas they are broadened in the intermediate regime 10(3)< or =k< or =10(7) Hz. The maximum intensity of the spin-echo sidebands for two-site jumps is highly dependent on the type of anisotropic interactions involved and the type of QCPMG experiment. Hence, in the fast limit the maximum intensity was 140% of the initial intensity when significant CSA was present or under the QCPMG-MAS experiment compared to 89 or 71% for the static experiment influenced by the quadrupolar interaction only. For 3-, 4-, and 6-site jumps the maximum intensity in the fast limit reached up to 339% of the intensity in the static limit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QCPMG-MAS NMR of half-integer quadrupolar nuclei.

By combination of fast magic-angle spinning (MAS) and detection of the free-induction decay during a rotor-synchronized quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) train of refocusing pulses, the sensitivity of quadrupolar-echo MAS NMR spectra for the central transition of half-integer quadrupolar nuclei exhibiting large quadrupolar couplings may be significantly enhanced. Enhancements by an ...

متن کامل

Solid state separated-local-field NMR spectroscopy on half-integer quadrupolar nuclei: principles and applications to borane analysis.

New multidimensional NMR methods correlating the quadrupolar and heteronuclear dipolar interactions affecting a half-integer quadrupolar spin in the solid state are introduced and exemplified. The methods extend separated-local-field magic-angle spinning (SLF MAS) NMR techniques that have been used successfully in spin-(1)/(2) spectroscopy to the study of S >/= (3)/(2) nuclei. In our implementa...

متن کامل

Separate-local-field NMR spectroscopy on half-integer quadrupolar nuclei.

New approaches to the characterization of resonances in the solid-state NMR spectroscopy of half-integer quadrupolar nuclei are explored, on the basis of the acquisition of heteronuclear separate-local-field spectra on rotating solids. In their two-dimensional version, these experiments correlate for each chemical site a second-order quadrupolar MAS powder pattern with the dipolar MAS sideband ...

متن کامل

Dynamic Effects on the Powder Line Shapes of Half-Integer Quadrupolar Nuclei: A Solid-State NMR Study of XO4 Groups

Multinuclear solid-state nuclear magnetic resonance studies (185/187Re, 55Mn, 75As, and 1H NMR) were undertaken on a series of polycrystalline inorganic salts incorporating diamagnetic XO4 groups, X being a half-integer quadrupolar nucleus. Exploiting data acquisition protocols that were recently developed for observing undistorted half-integer quadrupole central transitions, some of the larges...

متن کامل

Application of multinuclear magnetic resonance and gauge-including projector-augmented-wave calculations to the study of solid group 13 chlorides.

A series of four anhydrous group 13 chloride salts has been studied by (35/37)Cl solid-state NMR spectroscopy and complementary quantum chemical calculations. Due to the large (35/37)Cl quadrupolar interactions in these salts, a high magnetic field (21.1 T) and the variable-offset QCPMG technique was used to obtain full chlorine central transition (m = -1/2 <--> 1/2) NMR spectra. Analyses of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of magnetic resonance

دوره 171 2  شماره 

صفحات  -

تاریخ انتشار 2004